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Dynamics of a ball bouncing on a vibrated elastic membrane
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We investigate the dynamics of a ball bouncing on a vibrated elastic membrane. Beyond the classical
solid-solid case, we study the effect of introducing new degrees of freedom by allowing substrate oscillations.
The forcing frequency of the vibration strongly influences the different thresholds between the dynamical
states. The simple model proposed gives good agreement between the experiments and the analytical expres-
sion for the threshold at which the ball begins to bounce. Numerical simulations permit to qualitatively recover
the experimental phase diagram. Finally, we discuss how this simple system can give new insights in the recent

experimental studies on bouncing droplets.
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I. INTRODUCTION

In this paper we study a variation of the classical bounc-
ing ball (BB) experiment [1-3]: a rigid and massive ball is
forced to bounce against a vertical and periodic oscillation of
an infinitely heavy and rigid substrate. Despite the simplicity
of this experimental setup, a complex phenomena arises:
chaos is manifested, as theoretically predicted previously in
[4], through a period doubling scenario [5,6]. Beyond the
rigid-rigid case, recent experiments have added complexity
to the BB problem by using substrates or bouncing objects
which are deformable. Using viscous liquids with surface
tension effects or elastic solids, these modes of deformation
can couple to the bouncing motion. A highly viscous droplet
can be kept noncoalescing when impacting against a highly
viscous liquid whose recipient is settled into movement via
vertical and periodic oscillations. As the period of the oscil-
lation becomes of the order of the time necessary to drain the
air film separating the drop from the substrate, the coales-
cence is impeded, and the droplet can bounce periodically
for a strong enough imposed acceleration [7]. The impact of
the drop over the viscous substrate may eventually generate
waves that induce a drop motion; then a coupling with the
substrate deformations has to be taken into account when
studying such phenomena. When the droplet has a lower
viscosity than the viscous substrate, droplet deformations
have also to be taken into account to describe the bouncing
dynamics [8]. Instead of a liquid-gas interface, the substrate
can be a thin liquid soap film above which a droplet can
bounce, and be driven periodically [9]. We aim here to de-
scribe the “solid” case of this experiment, that is a rigid
sphere interacting with an elastic membrane and to look at
the effect of the frequency together with the amplitude. Our
purpose is to propose a general framework to study bouncing
ball dynamics coupled with an oscillation mode, which origi-
nates either from the deformation of a droplet or the sub-
strate.

We investigate the dynamics of a rigid ball free to bounce
on an elastic substrate accelerated vertically and periodically
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with a frequency f. This model experiment is able to capture
the physical mechanisms that govern the dynamics of the
bouncing systems discussed above. Denoting f|, the resonant
frequency of the membrane, the limit case for which f/f,
tends to zero corresponds to the BB system. We focus here
on the effects of this new parameter on the bouncing ball
dynamics. We first detail the experimental setup, then the
phase diagram with the different dynamical states observed
as a function of the applied acceleration and forcing fre-
quency. In a second part, we present a model for which nu-
merical and analytical predictions are compared to the ex-
perimental results. Despite its simplicity, our model gives a
good agreement between the experiments and the analytical
expression for the threshold of detachment of the ball. Nu-
merical simulations allow to explore the phase diagram that
appears to be in good agreement with the experimental one.
In conclusion, we emphasize the role of the new degree of
freedom brought by the substrate deformations and we ad-
dress the link between our approach and the different bounc-
ing drops experiments previously presented.

II. EXPERIMENTS

The experimental setup is presented in Fig. 1(a). A thin
disk-shaped elastomeric membrane (PolyDiMethylSiloxane,
PDMS) is clamped on top of an aluminum box. This
cylindrical-shape support is hermetically closed by the mem-
brane lying on top of it. This membrane has a diameter of 60
mm and a thickness of 300 um and can be stretched by
varying the air volume below it, which also modifies its
mean curvature. The support is fixed to the moving part of a
vibration exciter.

A function generator creates a sinusoidal oscillation of
frequency f=w/2m and amplitude A. This signal is amplified
by an audio power amplifier and sent to the vibration exciter.
A laser beam reflection over an optical position sensitive
detector (PSD) allows the measurement of the vertical posi-
tion of the support as function of time. We deduce from this
method the acceleration as function of time with a good ac-
curacy for such large displacements and low frequencies.
The normalized amplitude of the imposed acceleration is I’
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FIG. 1. Experimental setup (a) and characteristic electric signal
(b) detecting the contact between the ball and the elastic membrane.

=Aw?/g. The steel-made bouncing bead has a diameter of 1
cm. To characterize the system membrane+ball, we measure
the first resonance frequency of the free membrane, wé
=90 Hz, and the corresponding frequency of the membrane
with the additional mass of the ball, w;=20 Hz. These reso-
nance frequencies are measured by searching the maximal
amplitude of oscillations of a laser beam reflecting on the
membrane itself. Due to the energy dissipation within the
PDMS, the membrane vibrations are damped. The relaxation
time of the charged membrane has been measured and is
equal to 99 ms.

For sufficiently high vibrational amplitude, the ball
bounces on the membrane. The main experimental difficulty
is to precisely detect the times when the ball touches the
PDMS. In order to provide such measurements, a thin Nickel
sheet, 3 X3 mm, is deposited on the center of the mem-
brane. Two thin and light metallic wires are connected to the
bead and to the nickel sheet by soldering. Their lightness and
flexibility have been chosen in order to optimize the electric
contact and to reduce the mechanical perturbations. The cir-
cuit is closed by a dc generator and the signal is sent to the
terminals of an I/O card. As illustrated in Fig. 1(b), each time
the bead is in contact with the membrane, the measured ten-
sion is =+0.4 V, while it is zero when the bead is no longer
in contact. We can therefore accurately measure the time
between two successive rebounds, 7, and the time of flight e

We look at the different dynamical states of the ball as a
function of w and I'. For a fixed frequency, the acceleration
is increased from O to the threshold at which the ball bounces
in a chaotic way. We study the system for frequencies in
between 15 and 30 Hz, around the resonant frequency of the
charged membrane (w;=20 Hz). Depending on w and I the
ball can be stuck or can bounce in qualitatively different
ways. Examples of bouncing are given in Fig. 2. We use the
denomination n X mT to characterize the dynamical bouncing
state where T=2mw is the excitation period of the shaker.
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FIG. 2. Examples of nXmT bouncing dynamical states. The
period of the ball motion is 7;,=nmT, n is the number of dissimilar
times of flight.

Below the chaotic threshold, the ball motion is periodic with
a period T,=nmT, n being the number of dissimilar times of
flight and m is such that the product nm corresponds to the
periodicity T,. We present in Fig. 3 two bifurcation diagrams
for two frequencies of 21.5 and 26 Hz. In these diagrams we
plot the delay 7 between two consecutive take off as function
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FIG. 3. Bifurcation diagrams for f=21.5 Hz (top) and f
=26 Hz (bottom). We plot the time 7 (normalized by T) between
two take off from the membrane as function of I'.
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FIG. 4. Experimental phase diagram. The dashed line corre-
sponds to the analytical model for the threshold between a stuck
and a bouncing ball. Full lines are guides to the eyes. The two gray
vertical lines correspond to the bifurcation diagram frequencies in
Fig. 3

of I and the various dynamical states observed are men-
tioned. At low amplitude the ball is stuck while the motion is
chaotic at large amplitude.

From the bifurcation diagrams, we can determine the dif-
ferent states observed for increasing I'. We have determined
such diagrams for varying frequencies, all the states can then
be represented as function of frequency and acceleration.
The corresponding experimental phase diagram (I', w/ wy) is
presented in Fig. 4 The states n X 17T with n>0 are observed
for the classical BB system for sufficiently high amplitude of
vibrations. The main effect of the membrane elasticity is to
enhance the stability region of dynamical states with m>1.
Even if such states have been observed for the BB system,
their appearance strongly depends on initial conditions.

III. MODEL AND SIMULATIONS

We now propose a model to describe the dynamics of the
ball bouncing on the membrane. In order to capture the phys-
ics of the problem with the lowest complexity, we model the
membrane response with a spring of stiffness k and a zero
length at equilibrium. The mass of the membrane and of the
ball are, respectively, noted m,, and m,. The ball, the mem-
brane and the vibrating support are, respectively, located at
the heights z,, z;, and z,. A scheme of the model is repre-
sented in the inset of Fig. 5.

The balance of the vertical momentum is written with the
following relations:

My =—mg+r, (1)
myZy=—my,g —r—k(zy—zo) = vi(Z; = Zp) = vZ1,  (2)
70 =4A cos wf, (3)

where g is the gravitational acceleration, r is the reaction
force (r is equal to zero when the ball is not in contact with
the membrane) and v, , are the friction coefficients associated
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FIG. 5. Threshold between the stuck and the bouncing ball.
Inset: scheme of the model proposed for a bouncing ball on a vi-
brated membrane.

to the internal and external energy dissipation on the mem-
brane. We write the system in dimensionless variables using
the following changes of scale: z;=AZ;, t=1/w, r=myAw’7.
By dropping the tilde, we get

2’2=—%+r, (4)

Z =—l— F—M((Z —z0) + Bz, = Zp) + B.Z)
1 T M 02 1 0 i 1 0 e~ 421)
(5)
Z9=CcOs 1. (6)

The dimensionless parameters are: the ratio of masses u
my, . . Aw?
= the normalized acceleration F=?‘°, the parameter 3,

:(m:m measuring the dissipation respectively within and

outside the PDMS. The dimensionless frequency is =wﬂ0,
the later parameter being the ratio of the forcing frequency
over the resonance frequency of membrane charged with the
ball: wy= #er) We now compute the minimal acceleration
I" that allows the detachment of the ball from the membrane.
The ball is stuck when z,(f)=z,(¢) and by inserting Eqgs. (4)
into (5), we compute the reaction r and we conclude that z,

obeys to a forced oscillator equation:
. 11 . :
HhE-1- E[(Zz —20) + By — 20) + B2, (7)

1
I"=F+Z'2. (8)

The periodic evolution of z, is obtained from (6,7):
Q2 \/ QB +1

27T TN -0 [0B + B)

which, for small dissipation terms, presents a maximum am-

plitude at )=1. The phase ¢ depends on (), B;,. The ball
detaches from the membrane as the reaction r becomes zero,

]zcos(t +¢), (9)
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i.e., Z,=—7 . This defines the critical acceleration r,

22 2
r.- \/(1—9) + [0+ 8] (10)

QB +1 ’

this threshold is shown in Figs. 4 and 5 separating the region
where the ball remains on the membrane to the one where
the ball reach a 1 X 17 bouncing state.

We represent in Fig. 5 the experimental data for I, as a
function of () together with the analytical expression given
in Eq. (8). We use the value wy=20 Hz and B3;=0.08 as
measured experimentally [ 8,=1/(wy7)]. For our system, the
external dissipation can be neglected because the drag force
from the air on the membrane is very small. It can be evalu-
ated by calculating the energy loss during one period, that is
a quality factor Q=1/(28,) = (up,e)/ (p,a,) with p, and p,
the density of PDMS and air, respectively, e the membrane
thickness and a,, the maximal amplitude. Then we have
roughly 3,<5X 10733, and we use 8,=0. Without any free
parameters, we find a satisfactory agreement between the
experimental data and the model. We can clearly confirm that
the critical acceleration needed for the ball to bounce is mini-
mal around the resonance frequency of the charged mem-
brane.

The set of Egs. (4)—(6) can be written as a nonlinear map-
ping that gives the positions zé and zé” of the ball between
two successive bouncing events i and i+ 1. When the ball is
detached from the membrane, r=0, and the two equations of
motion (4,5) can be solved exactly: the ball (respectively, the
membrane) undergoes a parabolic trajectory (respectively, a
damped oscillatory motion around the position z,). As the
ball touches the membrane, r, z;, and z, are found using Eqs.
(7) and (8). The time 7;,; at which the ball takes off, is finally
obtained for r=0. Nevertheless, this implicit mapping pre-
sents two drawbacks. First, the i+ 1 bouncing event has to be
computed by solving a nonlinear equation that present sev-
eral solutions. A special numerical treatment has to be imple-
mented to select the physical solution. Second, near the
threshold detachment, there is a critical slowing down of this
algorithm due to numerous small jumps of the ball. There-
fore, in order to compare our simple model to the phase
diagram presented in Fig. 4, we solve the system defined by
Egs. (4)-(6) with a fourth order Runge Kutta scheme. The
time step is fixed to Ar=1072 and the reaction force r is
defined as r=-100(z,—z;) if z,<z, and O elsewhere. This
numerical factor has been chosen in order to provide a small
membrane deformation. Actually this reaction is linked to the
indentation of the ball in the membrane z,—z;. We consider
here a linearized variation but a more realistic expression for
this force would require contact mechanics analysis [10]. In
order to determine the behavior of the system, we use a
Poincaré section defined as the highest position of the ball in
flight, located at z,=0, together with z,—z;>5%z,. This last
constraint allows to avoid recording events when the ball is
stuck to the membrane. Numerically, the intersection of tra-
jectory with the Poincaré section is performed using the
Hénon algorithm [11]. The number of crossings of the
Poincaré section indicates the topology of the limit cycle; for
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FIG. 6. Numerical phase diagrams for the bouncing behaviors of
(a) n X 1T and (b) n X 2T states. The regions in black correspond to
n=1, in dark gray to n=2 and in light gray to n>4.

example one point reflects a simple cycle, two points indi-
cates that the trajectory is doubled, with an associated
doubled period.

As in the experiments, the numerical results present a
hysteresis. In order to explore the different stable states,
we provided four different initial conditions: z,(0)
=1,1.33,1.66,2.0 with z,(0)=0, for a given set of parameter
values. For each run, the duration is 1000 units of time, and
the measurements are performed over the last 100 units of
time in order to avoid transient regimes. The number of
crossing n is measured in this regime together with the pe-
riod T, of the oscillation: the branch number mT is therefore
obtained with m=T,/(2n). In Fig. 6(a), we show the differ-
ent states n X 17, whereas in Fig. 6(b), we display the results
for n X 2T. These two distinct phase diagrams explain the
bistability observed in experiments in the central zone of the
phase diagram (Fig. 4). The disagreement between the pre-
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diction for the threshold condition (10) and the numerics is
related to our way to define the Poincaré section, assuming
that the ball is detached when separated from the membrane
by a distance of 5% of the position of the membrane. The
existence of a synchronized region with a period 27 below
the critical curve [see Fig. 6(b) for 1~ 1.4] is due to our
method for obtaining Eq. (10), i.e., a detachment criteria is
not strong enough to predict an established regime. Never-
theless, the superposition of the two phase diagrams allows
to qualitatively recover the different stable zones observed
experimentally.

IV. CONCLUSION

To conclude, we will first recall the main result of this
study: the value of the frequency and the related effects of
the support deformations strongly influence the different
thresholds between the dynamical states and allow to stabi-
lize states that are not usual for the BB system. Similar dy-
namical states such as the 1X27T may be observed for
bouncing droplets. Our theoretical approach which captures
the essential physics of a ball bouncing on a vibrating mem-
brane can provide insights on the vibrating droplet experi-
ments [7-9]. As mentioned earlier, an analogy between the
bouncing of a ball on an elastic membrane and of a drop on
a fluid bath can be made. In our case, the new elastic degree
of freedom, as compared to the (BB) system, is due to the
membrane deformations while in the droplet experiments it
comes from the liquid surface tension. The main difference is
that there is a large energy dissipation due to the lubrication
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of the air film between a drop and a surface, so that the
parameter 3, can no longer be neglected. As a consequence a
transition point exists at which the curve giving the bouncing

threshold becomes monotonously increasing. This transition

. 2-52 . . .
arises when ;= 5 . Above this threshold, there is a single

minimum at w=0 while below it, two extrema are present at
Q=0 and Q=0Q". The frequency " is the resonant fre-
quency of the drop (or the membrane) shifted by the effect of
energy dissipation. This transition has been recently illus-
trated [8]. In that work, the authors measure the bouncing
threshold for drops with different viscosities. When the dis-
sipation within the drop is large enough, the minimum of the
curve I'.(w) disappears. The same trend was observed by
Couder et al. [7] using a silicone oil with a large viscosity. In
the case of bouncing on a fluid bath, we can therefore expect
a peculiar motion of the drop, different from the one ob-
served when the drop is in a 2X 1T dynamical state [12].
Finally, it is important to stress that our model could particu-
larly be applied to the case of a drop bouncing on a soap film
[9]. In this recent work, the authors have not explored the
effect of the vibrating frequency. A similar behavior to the
one observed in our study should be recovered. We hope that
this study will motivate future experimental investigations on
these different bouncing systems.
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